[ | E-mail | Share ]
Contact: Vithya Selvam
vithya_selvam@a-star.edu.sg
656-826-6291
Agency for Science, Technology and Research (A*STAR), Singapore
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes
1. A*STAR scientists have identified the enzyme, telomerase, as a cause of chronic inflammation in human cancers. Chronic inflammation is now recognized as a key underlying cause for the development of many human cancers, autoimmune disorders, neurodegenerative diseases, and metabolic diseases such as diabetes. This enzyme, which is known to be responsible for providing cancer cells the endless ability to divide, is now found to also jumpstart and maintain chronic inflammation in cancers.
2. In identifying this enzyme, inflammation can be prevented or reduced, and the common ailments can be alleviated. This discovery has considerable impact on healthcare because developing drugs to target telomerase can greatly reduce healthcare costs.
3. Currently, the annual costs and expenses associated with cancer and metabolic diseases such as diabetes amount to about $132 billion in the US alone . Although many safe and effective anti-inflammatory drugs such as aspirin are currently available on the market, these drugs sometimes have side effects because blocking inflammation is typically detrimental to normal physiology. Hence there exists a need for the development of cost-effective drugs that are targeted, so as to minimize side effects.
4. This collaborative research was conducted by scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) led by Assoc Prof Vinay Tergaonkar, A*STAR's Genome Institute of Singapore (GIS) and National University of Singapore. Other clinical collaborators include Cancer Science Institute of Singapore and Duke-NUS Graduate Medical School. The research findings were published on Nov. 18, 2012, in the prestigious scientific journal, Nature Cell Biology.
5. The team identified that telomerase directly regulates the production of inflammatory molecules that are expressed by NF-kB, a known master regulator of chronic inflammation. These molecules are critical for inflammation and cancer progression. By inhibiting telomerase activity in primary cancer cells obtained from patient samples, the scientists found that levels of IL-6, an inflammatory molecule known to be a key driver of human cancers, was reduced in expression as well. This is an important breakthrough that shows how targeting telomerase with drugs could potentially reduce inflammation, and hence get rid of cancer cells.
6. Dr Tergaonkar said, "These findings provide a unifying explanation for a decade worth of observations from leading laboratories in the field which show that chronic inflammation and telomerase hyperactivity co-exist in over 90 percent of human cancers. What we show that these two activities are actually interdependent. They also may lead to potentially novel drugs that will target a range of human ailments with inflammation as an underlying cause, which range from arthritis to cancer."
7. Prof Hong Wan Jin, Executive Director of IMCB, said, "The discovery speaks for the exceptional power of identifying novel mechanisms that have translational potential, through close collaborations among scientists in different A*STAR institutes, as well as to bring together both basic and clinical research scientists in Singapore. I am confident that we can expect more discoveries like this from Dr Tergaonkar's team."
###
Notes for Editor:
The research findings described in this media release can be found in the 18 November online issue of Nature Cell Biology, under the title, "Telomerase directly regulates NF-kB-dependent transcription" by Arkasubhra Ghosh1, Gaye Saginc2, Shi Chi Leow1, Ekta Khattar1, Eun Myong Shin1, Ting Dong Yan3, Marc Wong1, Zhizhuo Zhang4, Guoliang Li5, Wing-Kin Sung4,5, Jianbiao Zhou6, Wee Joo Chng6, Shang Li3, Edison Liu2 and Vinay Tergaonkar1,7
1 Laboratory of NF-kB Signaling, IMCB, Proteos, 138673, Singapore
2 Cancer Biology and Pharmacology, Genome Institute of Singapore, 138672, Singapore
3 Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 169857, Singapore
4 School of Computing, National University of Singapore, 119077, Singapore
5 Computational and Systems Biology, Genome Institute of Singapore, 138672, Singapore
6 Cancer Science Institute of Singapore, 119074, Singapore
7 Correspondence should be addressed to: Vinay Tergaonkar (vinayt@imcb.a-star.edu.sg)
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR)
For media queries and clarifications, please contact:
Vithya Selvam (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: (+65) 6826 6291
Email: vithya_selvam@a-star.edu.sg
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.
A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.
For more information about A*STAR, please visit www.a-star.edu.sg.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Vithya Selvam
vithya_selvam@a-star.edu.sg
656-826-6291
Agency for Science, Technology and Research (A*STAR), Singapore
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes
1. A*STAR scientists have identified the enzyme, telomerase, as a cause of chronic inflammation in human cancers. Chronic inflammation is now recognized as a key underlying cause for the development of many human cancers, autoimmune disorders, neurodegenerative diseases, and metabolic diseases such as diabetes. This enzyme, which is known to be responsible for providing cancer cells the endless ability to divide, is now found to also jumpstart and maintain chronic inflammation in cancers.
2. In identifying this enzyme, inflammation can be prevented or reduced, and the common ailments can be alleviated. This discovery has considerable impact on healthcare because developing drugs to target telomerase can greatly reduce healthcare costs.
3. Currently, the annual costs and expenses associated with cancer and metabolic diseases such as diabetes amount to about $132 billion in the US alone . Although many safe and effective anti-inflammatory drugs such as aspirin are currently available on the market, these drugs sometimes have side effects because blocking inflammation is typically detrimental to normal physiology. Hence there exists a need for the development of cost-effective drugs that are targeted, so as to minimize side effects.
4. This collaborative research was conducted by scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) led by Assoc Prof Vinay Tergaonkar, A*STAR's Genome Institute of Singapore (GIS) and National University of Singapore. Other clinical collaborators include Cancer Science Institute of Singapore and Duke-NUS Graduate Medical School. The research findings were published on Nov. 18, 2012, in the prestigious scientific journal, Nature Cell Biology.
5. The team identified that telomerase directly regulates the production of inflammatory molecules that are expressed by NF-kB, a known master regulator of chronic inflammation. These molecules are critical for inflammation and cancer progression. By inhibiting telomerase activity in primary cancer cells obtained from patient samples, the scientists found that levels of IL-6, an inflammatory molecule known to be a key driver of human cancers, was reduced in expression as well. This is an important breakthrough that shows how targeting telomerase with drugs could potentially reduce inflammation, and hence get rid of cancer cells.
6. Dr Tergaonkar said, "These findings provide a unifying explanation for a decade worth of observations from leading laboratories in the field which show that chronic inflammation and telomerase hyperactivity co-exist in over 90 percent of human cancers. What we show that these two activities are actually interdependent. They also may lead to potentially novel drugs that will target a range of human ailments with inflammation as an underlying cause, which range from arthritis to cancer."
7. Prof Hong Wan Jin, Executive Director of IMCB, said, "The discovery speaks for the exceptional power of identifying novel mechanisms that have translational potential, through close collaborations among scientists in different A*STAR institutes, as well as to bring together both basic and clinical research scientists in Singapore. I am confident that we can expect more discoveries like this from Dr Tergaonkar's team."
###
Notes for Editor:
The research findings described in this media release can be found in the 18 November online issue of Nature Cell Biology, under the title, "Telomerase directly regulates NF-kB-dependent transcription" by Arkasubhra Ghosh1, Gaye Saginc2, Shi Chi Leow1, Ekta Khattar1, Eun Myong Shin1, Ting Dong Yan3, Marc Wong1, Zhizhuo Zhang4, Guoliang Li5, Wing-Kin Sung4,5, Jianbiao Zhou6, Wee Joo Chng6, Shang Li3, Edison Liu2 and Vinay Tergaonkar1,7
1 Laboratory of NF-kB Signaling, IMCB, Proteos, 138673, Singapore
2 Cancer Biology and Pharmacology, Genome Institute of Singapore, 138672, Singapore
3 Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 169857, Singapore
4 School of Computing, National University of Singapore, 119077, Singapore
5 Computational and Systems Biology, Genome Institute of Singapore, 138672, Singapore
6 Cancer Science Institute of Singapore, 119074, Singapore
7 Correspondence should be addressed to: Vinay Tergaonkar (vinayt@imcb.a-star.edu.sg)
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR)
For media queries and clarifications, please contact:
Vithya Selvam (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: (+65) 6826 6291
Email: vithya_selvam@a-star.edu.sg
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.
A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.
For more information about A*STAR, please visit www.a-star.edu.sg.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2012-11/afst-asi112012.php
henrik stenson jobs act greg mortenson jim marshall died 2013 toyota avalon the secret life of bees full moon
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.